Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Aziz Alaoui Tahiri,^a Ibtissam Messouri,^a Mohammed Lachkar,^a Peter Y. Zavalij,^b Robert Glaum,^c Brahim El Bali^a* and Ouarsal Rachid^a

^aDépartement de Chimie, Faculté des Sciences Dhar Mehraz, BP 1796 Atlas, 30000 Fès, Morocco, ^bInstitute for Materials Research and Department of Chemistry, State University of New York at Binghamton, NY 13902-6000, USA, and ^cInstitut für Anorganische Chemie, Universität Bonn, Gerhard-Domagk-Straße 1, D-53121 Bonn, Germany

Correspondence e-mail: belbali@eudoramail.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (P–O) = 0.003 Å R factor = 0.044 wR factor = 0.099 Data-to-parameter ratio = 14.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dipotassium nickel(II) bis(dihydrogendiphosphate) dihydrate, $K_2Ni(H_2P_2O_7)_2 \cdot 2H_2O_7$

 $K_2Ni(H_2P_2O_7)_2 \cdot 2H_2O$ is isostructural with its Zn analogue. Its structure is characterized by $[Ni(H_2O)_2(H_2P_2O_7)_2]^{2-}$ coordination units. These are linked by hydrogen bonds and K⁺ ions. Ni²⁺ is situated on an inversion centre and has an almost regular octahedral coordination.

Received 10 November 2003 Accepted 9 December 2003 Online 19 December 2003

Comment

The present work is a continuation of our investigation of the series $A_x T_y (H_2P_2O_7)_z \cdot nH_2O$ (A = alkali metal, T = transition metal or magnesium). We previously reported three compounds of this family of acid pyrophosphates for A = K and n = 2, viz. T = Co (Alaoui et al., 2002), Zn (Alaoui et al., 2003a), and recently Mn (Alaoui et al., 2003b). K₂Ni(H₂P₂O₇)₂·2H₂O is isotypic with the zinc compound.

The crystal structure of the new dihydrogenpyrophosphate (Fig. 1) can be described as a three-dimensional network built of $[Ni(H_2O)_2(H_2P_2O_7)_2]^{2-}$ coordination units, which are linked by potassium ions and hydrogen bonds.

The potassium ions are coordinated by seven O atoms. Distances d(K-O) < 3.15 Å (the shortest $K \cdot \cdot \cdot H$ distance) are regarded as contributing to the bonding around potassium. Fig. 1 shows a projection on to the *ac* plane of the structure of $K_2Ni(H_2P_2O_7)_2 \cdot 2H_2O$.

The unit cell contains two unique P atoms coordinated by four O atoms in a slightly distorted tetrahedral conformation. The two tetrahedra share one corner (O1) to form the pyrophosphate unit. The average distance in the P_2O_7 group is

Figure 1

Projection of the crystal structure along the *b* axis, including hydrogen bonding (red lines). Key: polyhedra: yellow (P_2O_7 , green (NiO₆); balls: large pink (K), small grey (H), small blue (O).

© 2004 International Union of Crystallography

Printed in Great Britain - all rights reserved

 $d_{\rm av}(P-O) = 1.537$ Å. This value is almost identical to those found in other acid pyrophosphates $K_2T(H_2P_2O_7)_2 \cdot 2H_2O$ [T = Mn (1.534 Å), Co (1.538 Å) and Zn (1.533 Å)]. As in other compounds with the same formula type, the $[H_2P_2O_7]$ groups in K₂Ni(H₂P₂O₇)₂·2H₂O show, due to the chelating bonding mode to Ni²⁺, an almost eclipsed conformation with an O-P-O bridging angle of 130.1 (2) $^{\circ}$. This value is close to those reported for the Mn and Zn compounds, respectively, viz. 130.9 (2) and 130.8 (2)°.

The environment of the nickel cations in $K_2Ni(H_2P_2O_7)_2$. 2H₂O consists of two bidendate dihydrogenpyrophosphate moieties and two water molecules. Ni²⁺ has an almost regular octahedral coordination with $d_{av}(Ni-O) = 2.058 \text{ Å}$. This value is close to those observed for [NiO₆] in anhydrous phosphates (α -Ni₂P₂O₇ (2.077 Å; Lukaszewicz, 1967), Ni₂P₄O₁₂ (2.045 Å; Nord, 1983) and SrNi₂(PO₄O)₂ (2.077 Å; El Bali et al., 1993).

In Fig. 2, the oxygen coordination around K, Ni and P is illustrated.

Another characteristic feature of this structure involves hydrogen bonding of the H atoms of the [H₂P₂O₇] groups and of the water molecules to terminal atoms of the pyrophosphate groups, interconnecting the coordination units $[Ni(H_2O)_2(H_2P_2O_7)_2]^{2-}$ into a three-dimensional network (Fig. 1).

Experimental

Crystals were prepared by dissolving NiCl₂·6H₂O in a solution of $K_4P_2O_7$ in water. The mixture was stirred for 1 d and the resulting green solution was allowed to stand at room temperature. After a few days, small pale-green crystals deposited, which were filtered off and washed with 80% ethanol solution.

Crvstal data

-	
$K_2Ni_2(H_2P_2O_7)_2\cdot 2H_2O$	Z = 1
$M_r = 524.85$	$D_x = 2.449 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 6.8554 (8) Å	Cell parameters from 1
$b = 7.3124 (9) \text{\AA}$	reflections
c = 7.5610(9) Å	$\theta = 2.8-28.8^{\circ}$
$\alpha = 81.012 \ (2)^{\circ}$	$\mu = 2.48 \text{ mm}^{-1}$
$\beta = 72.301 \ (2)^{\circ}$	T = 293 (2) K
$\gamma = 83.691 \ (2)^{\circ}$	Needle, pale green
$V = 355.87 (7) \text{ Å}^3$	$0.28 \times 0.06 \times 0.05 \text{ mm}$
Data collection	
Bruker SMART APEX	1757 independent reflect
diffractometer	1290 reflections with I =
ω scans	$R_{\rm int} = 0.046$
Absorption correction: multi-scan	$\theta_{\rm max} = 28.3^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 9$
$T_{\min} = 0.692, \ T_{\max} = 0.883$	$k = -9 \rightarrow 9$
3793 measured reflections	$l = -10 \rightarrow 10$
Refinement	
Refinement on F^2	H-atom parameters con
	· · · · · · · · · · · · ·

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.099$ S = 0.961757 reflections 123 parameters

086

ctions $> 2\sigma(I)$

istrained $w = 1/[\sigma^2(F_o^2) + (0.045P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.56 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.54 \text{ e} \text{ Å}^{-3}$

Figure 2

Coordination of K, Ni and P, with anisotropic displacement parameters drawn at the 50% probability level. Key: green (Ni), blue (K), red (O), yellow (P), grey (H). [Symmetry codes: (i) x, y, 1 + z; (ii) 1 - x, 1 - y, 1 - z; (iii) 1 - x, y, 1 - z; (iv) 2 - x, y, 1 - z; (v) 1 + x, y, z.]

Table 1

Selected geometric parameters (Å, °).

K-O6 ⁱ	2.761 (3)	Ni-O1W	2.067 (3)
K-O2 ⁱⁱ	2.788 (3)	P1-O2	1.495 (3)
K-O4 ⁱⁱⁱ	2.869 (3)	P1-O3	1.495 (3)
K-O7 ^{iv}	2.924 (3)	P1-O4	1.556 (3)
$K - O1W^{ii}$	2.958 (3)	P1-O1	1.602 (3)
K-05	2.960 (3)	P2-O7	1.501 (3)
$K - O2^{v}$	3.149 (3)	P2-O5	1.502 (3)
K-O3 ⁱⁱ	3.311 (3)	P2-O6	1.542 (3)
Ni-O5	2.052 (3)	P2-O1	1.604 (3)
Ni-O2	2.055 (3)		
O2-P1-O3	116.38 (16)	O7-P2-O5	114.66 (17)
O2-P1-O4	110.01 (17)	O7-P2-O6	111.44 (17)
O3-P1-O4	109.28 (16)	O5-P2-O6	112.52 (17)
O2-P1-O1	109.40 (15)	O7-P2-O1	107.50 (16)
O3-P1-O1	104.78 (15)	O5-P2-O1	110.49 (15)
O4-P1-O1	106.44 (16)	O6-P2-O1	98.98 (16)

Symmetry codes: (i) x, y, 1 + z; (ii) 1 - x, 1 - y, 1 - z; (iii) 1 - x, -y, 1 - z; (iv) 2-x, -y, 1-z; (v) 1+x, y, z.

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O4−H4···O7 ⁱⁱⁱ	0.79 (3)	1.74 (3)	2.530 (4)	175 (5)
$O6-H6\cdots O3^{v}$	0.78 (3)	1.75 (3)	2.522 (4)	169 (6)
$O1W - H1W \cdot \cdot \cdot O3^{vi}$	0.79 (3)	1.97 (3)	2.746 (4)	169 (5)
$O1W - H2W \cdot \cdot \cdot O7^{vii}$	0.77 (3)	2.02 (3)	2.793 (4)	172 (5)
		() 1 .	()) 1	1 ()

Symmetry codes: (iii) 1 - x, -y, 1 - z; (v) 1 + x, y, z; (vi) 1 - x, 1 - y, -z; (vii) x, 1 + y, z.

The H atoms were located in a difference Fourier map. The O-H distance was constrained to be approximately the same for all H atoms. All other parameters, including U_{iso} values, were refined freely.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 1999); software used to prepare material for

publication: *SHELXL*97 (Sheldrick, 1997) and *PLATON* (Spek, 1990).

References

- Alaoui, A. T., Ouarsal, R., Lachkar, M., El Bali, B. & Bolte, M. (2002). Acta Cryst. E58, i91–i92.
- Alaoui, A. T., Ouarsal, R., Lachkar, M., Zavalij, P. Y. & El Bali, B. (2003*a*). *Acta Cryst.* E**59**, i50–i52.
- Alaoui, A. T., Ouarsal, R., Lachkar, M., Zavalij, P. Y. & El Bali, B. (2003b). Acta Cryst. E59, i68–i69.
- Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dowty, E. (1999). ATOMS for Windows and Macintosh. Version 5. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
- El Bali, B., Boukhari, A., Aride, J. & Abraham, F. (1993). J. Solid State Chem. 104, 453–459.
- Lukaszewicz, K. (1967). Bull. Acad. Pol. Sci. Ser. Sci. Chim. 15, 47-51.
- Nord, A. G. (1983). Acta Chem. Scand. 37, 539-543.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.